Practice Problems Unit 3

Patrick Flaherty

Problem \#1

In triangle $A B C$, angles A and B are $4: 6$ respectively, and the measure of angle C is 80 degrees. What is the measure of angle A ?

Given angles A and B are 4:6, we can write that as $m<A=4 x$, and $m<B=6 x$. By triangle sum theorem, we know that $m<A$ plus $m<B$ plus $m<C$ is equal to 180 degrees. Since $m<C$ is 80 degrees, we can substitute it and our other values in to have $4 x+6 x+80^{\circ}=180^{\circ}$, simplified as $10 x+80^{\circ}=180^{\circ}$. Through the subtraction property of equality, we can subtract 80 from both sides, to get $10 x=100^{\circ}$. If we divide both sides by 10 , we get $x=10^{\circ}$. Congradulations! You aren't done! Remember, $m<A$ is $4 x$, and 4 times 10 is 40 , so the answer is. . . $m<A=40^{\circ}$

Problem \#2

Given $A B$ is congruent to $A C$ and $m<A$ is 40°, what is the measure of the linear pair of <B?

Since $A B$ is congruent to $A C$, we can tell that A is the vertex angle, and triangle $A B C$ is isosceles. Since $A B C$ is isosceles, the base angles (B and C) are congruent. Through triangle sum theorem, we can tell that $<A$ plus $<B$ plus $<C$ is equal to 180°. By substitution, $40^{\circ}+\angle B+\angle C=180^{\circ}$. If we subtract 40 from both sides, we get $\angle B+<C=140^{\circ}$. Since $<B$ and $<C$ are of the same measure, we can say that they are 70° each. If $m<B=70^{\circ}$, the linear pair theorem means $180-m<B$ is the measure of the linear pair. In other words, the measure of the linear pair of $\angle B$ is 110°.

