Practice Problems

Patrick Flaherty

Problem One

Problem 1- Triangle $A B C$ has points $A(1,0) B(3,0)$ and $C(3,5)$. If it were reflected across the y axis, and then translated along the vector <0-5>, what would the coordinates of $C^{\prime \prime}$ be?

Solving- Since we know the coordinates, and where the y axis is, we can reflect the triangle. As a rule, reflection across the y axis means (x, y) changes to $(-x, y)$. If A is $(1,0)$, then A^{\prime} is $(-1,0)$ after reflection. If B is $(3,0)$, then B^{\prime} is $(-3,0)$ as well. If C is at $(3,5)$, then $C^{\prime}(-3,5)$. Using a vector notation means $<e, f>$, and $(x+e, y+f)$. In this case, $e=0$, and $f=-5, s o(x+0, y-5)$. We only need C' for this, which is $(-3,5)$. So, $(-3+0,5-5)$ is C ". In other words, C " is $(-3,0)$.

Problem 2

Problem 2- Pat builds models of WWII planes. If the original wingspan of a Grumman FF was 34 ' 6", and his model is $3^{\prime} 10$ ", what is the scale factor for this reduction?

Solving- First, we should make the values of wingspans into inches. $34 * 12=408$, and $408+6=414$. The original wingspan was $414 " .3^{*} 12=36$, and $36+10=46$. The model has a wingspan of $46 "$. We can new over old with the wingspan to find the scale factor. Essentially, 46/414. Simplified, we have a scale factor of $1 / 9$.

FF / SF "Fifi" N.d. Wikipedia. N.p.: n.p., n.d. N. pag. Print.

